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Abstract. Modeling of wave propagation in bodies with different geometrical form, is an urgent task. Of 

particular interest is the construction of the dispersion curves for the deformable wedge considering rheological 

properties of the material. The aim of this work is a theoretical study of changes in the complex phase velocity of 

the wave number. The object of this study is deformable wedge. Wedge material is linearly viscoelastic. Boundary 

value problem for a system of differential equations is solved using the method of lines, which allows you to use 

the method of orthogonal sweep Godunov and Mueller. The calculation results obtained on the 

dimensionless quantities. The viscoelastic properties of the material are described by the three-parameter 

relaxation kernel Koltunov - Ryzhanitsen. For the numerical implementation of the problem, use a tool MAPLE 

9.5. The results of calculations are compared with the known data [2], and differ by 6-20%. Accounting for the 

viscoelastic properties of the material of the wedge increases the real part of the wave propagation velocity is 10-

15%, and also allows to evaluate the damping of the system as a whole. It is found that for small wedge angles 

allowed the use of the simplified theory of Kirchhoff - Love and Timoshenko throughout the wavelength range. 
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I. Introduction 
In [1,2,3] the propagation of waves in viscoelastic extended plates and layers of variable thickness. In these 

studies found that the role of boundaries in determining the structure of the wave field, the spectrum of the 

natural frequencies and their own forms, revealed in a series of simple tasks, and change the border 

accompanied by consistently increasing difficulties. It also discusses the emergence of local singularities in the 

wave fields. 

In this paper, in contrast to these considered the wave propagation along the z axis in an infinite 

viscoelastic cylinder with a radial crack, which is a wedge at an angle 
090 .  

 

II. Statement of the problem and their solutions 
The basic equations of motion of a deformable cylinder (of radius R) with a radial crack, which when 

0

0 90  case describes a wedge. They are set with three groups of relations. The system of 

equations of motion of the wedge in a cylindrical coordinate system       ( zr ,, ) takes the form 

            ;
1

2 zrrdrdt

u
rzrrrrrrr

















 




   

;
21

2

2

zrrrt

u
zrr


















  




     (1) 

                              

.
1

2

2




 


















 zzzrzzzz

rrrzt

u

 
Here

 
;

r

u
r

rr



         ;

z

u
z

zz



     ;

1

r

uu

r

rr 






          (2)   



Wave propagation in viscoelastic wedge with an arbitrary angle peaks 

www.ijres.org                                                       33 | Page 

;
1

2

1




















r

u

r

uu

r

r
r





 ;

2

1



















z

u

r

u
rz

rz


 
;

1

2

1




















 


z

z

u

rz

u

 

;~2
1~

r

u

z

u

r

uu

rr

u rzrr
rr



























 






;
1~~2 




















r

u

r

uu

r

r
rr


 

                                                          

;~~2 


















z

u

r

u rz
rzrz                          (3) 

;
1~2

1~






































r

uu

rz

u

r

uu

rr

u rzrr










 

;
1~





















 


z

z

u

rz

u
 

,~2
1~

z

u

z

u

r

u

r

u

rr

u zzrr
zz



























 



 

              where                              

     
;)()()()(~

,)()()()(
~

0

0

0

0

























t

t

dftRtftf

dftRtftf









(4) 

)(tf  - a function;   - density materials, )(  tR  and
 

)(  tR  - the core relaxation, 0,o  - the 

instantaneous modulus of elasticity of a viscoelastic medium,  zr uuuu ,, 


  is the vector displacement which 

depends 
zzzzrrrr

  ,,,,, - respectively, the components of the stress 

tensor; zzzzrrrr
  ,,,,, - respectively, the components of the strain tensor. 

Equation (4) after the application of the method of freezing [4] takes the following form: 
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- , respectively, the cosine and sine 

Fourier transforms; 
R - the real part of the complex frequency  (

IR i  );  - density;  tR  and 

)(tR respectively relaxation kernel material. Relation (1), (2), (3) after algebraic manipulations are identical 

to the system of six differential equations with complex coefficients are solved for the first derivative with 

respect to the radial coordinate 
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where we have introduced the notation 
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The boundary conditions are specified as: 
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Periodicity conditions allow to eliminate the dependence of the basic unknowns of time and axial coordinate z 

with the following change of variables: 
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where            rrrrurvrW z  ,,,,,  - amplitudes of fluctuations which are function of radial 

coordinate; к -wave number; 
IR iссс  -complex phase speed; 

IR i  -complex frequency. Under 

condition of (6) division of variables r and φ, it is impossible. Taking into account (7) system of the equations 

(5) becomes: 
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Similarly transformed boundary conditions (6) 
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Thus, it is formulated a spectral boundary problem (8), (9), describing distribution of harmonious 

waves in an infinite viscoelastic wedge with any corner of top. 

As an example of a viscoelastic material we will accept the three-parametrical kernel of a relaxation 
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possessing a weak singularity. 

The boundary problem for system of the differential equations in private derivatives (8), by means of a 

method of straight lines, allows to use a method of orthogonal pro-race[5]. According to a method of straight 

lines the rectangular range of definition of function of the main unknown becomes covered by the straight lines 

which parallel to an axis r and are evenly costing from each other. 

The decision we find only for these straight lines, and the derivative in the direction φ, is replaced with 

approximate final differences. Used approximating formulas of the second order for the first and second 

derivative look like: 
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where i changes from 0 to  1,01  NiN ,
  

- a projection of unknown function to a straight line with 

number i; Δ - a splitting step on coordinate φ. 

As a result of digitization the vector of the main unknown of the general dimension 6N can be written 

down in a look: 
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The central differences (10), (11) are used for internal straight lines (1 <i <N), the left and right differences (10), 

(11) allow to consider boundary conditions on φ. In the first case a derivative on φ in the right parts of 

system of the equations (8) it is expressed on formulas: 
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 Thus, an initial spectral task (8), (9) by means of coordinate digitization φ on a method of straight lines it is 

reduced to an initial task (11). To the solution of this task we will apply a method of orthogonal pro-race. 

 

III. Numerical results 
 Stretch value in the formulation of the problem are selected so that the shear velocity Сs, the density ρ 

and the outer radius R are the single value. And also 1,0;05,0;048,0  A  . For the numerical 

implementation of the problem, use a tool MAPLE 9.5. 

 In the table 1 (   0)(  tRtR  ) limiting values of phase speed of the first edged fashion 

depending on a wedge corner are given in top (in terms of thickness of a wedge in h2 basis) (column 2), found 

for a material with Poisson factor υ = 0,25 according to the theory of plates Kirchhoff - Love (column 3), 

Timoshenko - (column 4). Within the design procedure of a three-dimensional wedge stated in this article 

(column 5-6) and on a formula  mСC R sin0   [2], m = 1, 2, …, mφ < 90 ° (column 7). The column 5 

corresponds to calculation option with three internal straight lines (N = 3) and boundary conditions (8), the 

column 6 corresponds to boundary conditions: 

0;0;0;
2

0   


 zrzr uu  
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at the same quantity of straight lines. According to numerical results, and given in table 1, options of calculation 

for Kirchhoff – Love method, Timoshenko method and the three-dimensional theory will be coordinated among 

themselves within 7 % for wedge corners with a thickness in the basis h2 which is not exceeding 0,5 (a wedge 

corner φ0 = 28°).   Thus, unlike wave guides with rectangular section in wedge-shaped wave guides with rather 

small corner of a wedge in the analysis of dispersive dependences of the first fashion is admissible to use the 

theory of plates Kirchhoff - Love.  Established fact that the phenomenon is due to the localization of the waveform 

near the acute angle of the wedge, as described in [3]. 

 

Table 1: Calculation methods for the Kirchhoff - Love, Timoshenko and three-dimensional theory. 

 

h2  0 by the method of 

the Kirchhoff-

Love 

Timoshenko 

method 

the method 

for 

calculating 

the three-

dimensional 

wedge (1) 

the method for 

calculating the 

three-

dimensional 

wedge (2) 

at work [2]
 

0,2 11
0 

0,2 0,196 - - 0,182 

0,3 17
0 

0,3 0,286 0,308 0,298 0,276 

0,5 28
0 

0,5 0,442 0,475 0,462 0,433 

0,7 38
0 

0,7 0,563 0,605 0,592 0,574 

1 53
0 

1 0,691 0,741 0,729 0,736 

2 90
0 

2 0,864 0,908 - 0,92 

 

On the basis of the received results the following conclusions are drawn: 

- results of calculation of the limiting speed(
RCс  )  of propagation of the first mode tapered waveguide 

on the theory of plate Kirchhoff – Love[2] and the dynamic theory of elasticity does not differ by more than 6% 

for the edge of the wedge angle not exceeding 28°. At 
00 9028   calculation results differ up to 20%. 

- account the viscoelastic properties of the material of the wedge increases the real part of the wave 

propagation velocity of 10-15%, as well as to evaluate the damping capacity of the system as a whole. 

Thus, for small wedge angles allowed the use of the simplified theory of Kirchhoff - Love and Timoshenko 

throughout the wavelength range. 
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